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Supplementary Experiments and Discussions of
Hybrid LLM-DDQN based Joint Optimization of V2I Communication

and Autonomous Driving
Zijiang Yan, Hao Zhou, Hina Tabassum, and Xue Liu

The following presents some supplementary experiments
and discussions for “Hybrid LLM-DDQN based Joint Opti-
mization of V2I Communication and Autonomous Driving”.
In particular, we first present detailed example prompts that
we used in the experiments to guide LLMs for autonomous
driving (AD) decision-making. Meanwhile, we also introduce
some sample responses generated by different LLMs, includ-
ing Llama3.1-8B, Llama3.1-70B, ChatGPT-4o and Claude 3.5
Sonnet. This document serves as a supplementary material for
readers to better understand how LLMs can be applied for AD
policy optimization.

Task Description: Assist in driving the ego vehicle on a
highway.

Task Goal:
• Achieve maximum velocity for the ego vehicle while

minimizing collisions.
• Reduce unnecessary lane changes (LANE_RIGHT,
LANE_LEFT) unless required for safety.

• Prefer keeping the vehicle in the right-most lane
when safe to do so.

Environment Features:
• ’x’: Horizontal offset of the vehicle relative to the

ego vehicle along the x-axis.
• ’y’: Vertical offset of the vehicle relative to the ego

vehicle along the y-axis.
• ’vx’: Velocity of the vehicle along the x-axis.
• ’vy’: Velocity of the vehicle along the y-axis. A non-

zero value indicates lane changes.
The first row of the observation table represents the
ego vehicle. Observations, if normalized, are within a
fixed range [100, 100, 20, 20] for ’x’, ’y’, ’vx’, ’vy’
respectively.

Observations: Given the current state of the trans-
portation environment with the following observations:

3.0 7.0 6.0 3.0
2.0 0.0 0.0 3.0
3.0 0.0 1.0 3.0
4.0 3.0 0.0 3.0
4.0 1.0 0.0 9.0


Experience Replay: The last step was a good training

step.
Here are some examples of good previous experiences.

I suggest you try a higher reward action based on these
examples:

• State: [3.0, 7.0, 6.0, 3.0, 2.0, 0.0, 0.0, 3.0, 3.0, 0.0,
1.0, 3.0, 4.0, 3.0, 0.0, 3.0, 4.0, 1.0, 0.0, 9.0], Action:
FASTER, Reward: 0.9824417009602194

• ...
Here are some examples of poor previous experiences.

I suggest you try to avoid action based on these examples:
• State: [3.0, 7.0, 6.0, 3.0, 2.0, 0.0, 0.0, 3.0, 3.0, 0.0,

1.0, 3.0, 4.0, 3.0, 0.0, 3.0, 4.0, 1.0, 0.0, 9.0], Action:
FASTER, Reward: 0.9824417009602194

• ...
Rules: Choose one action from FASTER, SLOWER,
LANE_RIGHT, LANE_LEFT, or IDLE.

Decision: Please provide the chosen action with an
explanation in the response.

The prompt can split in the following parts. Firstly, the Task
Description defines the autonomous driving task. The Task
Goal is to achieve three objectives for optimizing autonomous
driving. The Task Definition introduces the environment states
that the agent AV needs to evaluate. The Observations include
discretization of the observation information for these AVs and
compute the post-processing matrix Then, we include good
examples set and bad examples set, which provide relevant
previous experiences to support LLMs in addressing unseen
environments. Finally, we set extra reply rules to choose
action from action pool, guiding the LLM to focus on the
decision-making process.

A. LLMs Response
1) Llama3.1-70B Response:

Based on the provided information, the goal is to balance
achieving maximum velocity with safety, minimal lane
changes, and maintaining a position in the right-most lane
when it is safe.

Key Points:
• Ego Vehicle:

– Position: 3.0 (x), 7.0 (y).
– Velocity: 6.0 (vx), 3.0 (vy). The ego vehicle is

moving relatively fast but is not changing lanes
aggressively (low vy).

• Other Vehicles:
– Vehicle 1: Same lane as the ego vehicle (x: 2.0,

y: 0.0), but slower.
– ...

Past Experience Analysis:
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• Previous experiences suggest that taking the
FASTER action in similar states has resulted
in high rewards (e.g., 0.9824417009602194 and
0.9996955122298443).

• However, the presence of slower traffic ahead (Ve-
hicle 1) indicates that accelerating further might not
be optimal.

• The reward for changing lanes to the left
(LANE_LEFT) in similar situations has been moder-
ate (0.8333333333333334), indicating potential ben-
efits in certain contexts.

Strategy:
• Maximize Speed: Given the ego vehicle’s current

speed and the presence of slower traffic, maintaining
or slightly adjusting speed seems prudent.

• Lane Change Consideration: With Vehicle 1 ahead
and Vehicle 4 nearby, changing lanes to the left
could provide more space and flexibility.

• Safety: The primary concern is avoiding collisions
and minimizing unnecessary lane changes.

Action Decision:
• Best Action: LANE_LEFT
• Explanation: Considering the slower vehicle ahead

and the potential benefits of changing lanes observed
in past experiences, moving to the left lane appears
to be the safest and most efficient action, aligning
with the goal of minimizing collisions and unneces-
sary lane changes.

2) ChatGPT-4o Response:

Current Observations:
• Ego Vehicle (First Row): [3.0, 7.0, 6.0, 3.0]

– ’x’ = 3.0: The vehicle is moderately close to
other cars.

– ’y’ = 7.0: There’s a significant vertical offset,
indicating some distance between the ego vehi-
cle and the vehicle in the next lane.

– ’vx’ = 6.0: The velocity along the x-axis is
already high.

– ’vy’ = 3.0: The ego vehicle is potentially chang-
ing lanes.

General Observations of Nearby Vehicles:
• Second row: A car at a distance of x = 2.0 and y =

0.0, velocity is low along the x-axis (vx = 0.0) but
with a vy = 3.0 (possibly changing lanes or cutting
in).

• ...
Analysis with Past Experience:
• The ego vehicle is moving at a relatively high speed

(vx = 6.0). In a past experience, the action FASTER
in a similar state with high velocity yielded a reward
of 0.9824. However, given that the vehicles around
the ego vehicle are not moving as fast and some are
possibly changing lanes (vy = 3.0), increasing speed
further may increase the risk of collision.

• The action IDLE in previous states with a high
velocity, such as in the experience [6.0, 7.0, 6.0,
2.0, 3.0, 2.0, 0.0, 3.0], resulted in a high reward of
0.9999, indicating that maintaining the current speed
is often beneficial when traveling at high velocity.

• There are vehicles with significant lateral movement
(vy = 3.0 in row 2), which is consistent with past
experiences where unnecessary lane changes led to
lower rewards. For example, the action LANE_LEFT
in the state [3.0, 5.0, 6.0, 3.0, 2.0, 3.0, 1.0, 3.0]
resulted in a reward of 0.8333, which was lower
than the reward of maintaining position.

• Given the current state and previous experiences,
where high-speed maintenance yielded better results
than aggressive actions, the best decision would be
to maintain the current speed and lane position.

Decision:
• Action: IDLE
• Explanation: Based on past experience where main-

taining speed and lane resulted in higher rewards,
and considering the current high velocity with
nearby vehicles showing signs of lane changes,
maintaining the current speed and avoiding unnec-
essary actions will likely yield the safest and most
rewarding outcome.

The above sample responses show LLMs has the following
advantages to tackle AD problem.

• LLMs give the response with proper explanation For
example, in Llama-70B response,

”The ego vehicle is approaching a slower vehicle
directly ahead, and to avoid reducing speed too
much, it can switch lanes to the left, where there
appears to be more space and less obstruction. This
prevents unnecessary deceleration while maintaining
safety, aligning with the goal of minimizing lane
changes and collisions.”

The explanation highlights the task goal of aligning
human understanding and providing useful references.

• LLMs rely on past experience to support AD decision
making In ChatGPT-4o response, LLM can find the
previous relevant examples

”The action IDLE in previous states with a high
velocity, such as in the experience [6.0, 7.0, 6.0,
2.0, 3.0, 2.0, 0.0, 3.0], resulted in a high reward
of 0.9999, indicating that maintaining the current
speed is often beneficial when traveling at high
velocity.”

This demonstrates that LLM can sort the reward within
the K− closest examples.

• LLM can comprehensively balance the tradeoff be-
tween multi-objective optimization In our study, we
pursue higher velocity while we need to avoid collisions.
In Llama3.1-70B response,

”Lane Change Consideration: With Vehicle 1 ahead
and Vehicle 4 nearby, changing lanes to the left
could provide more space and flexibility. Safety:
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The primary concern is avoiding collisions and
minimizing unnecessary lane changes.”

We notice that they consider potential lane change op-
portunities but also aware of the risk of collisions. In
some cases, they can retrieve relevant example to avoid
to choose action which lowering reward in the past
examples.

”There are vehicles with significant lateral move-
ment (vy = 3.0 in row 2), which is consistent with
past experiences where unnecessary lane changes
led to lower rewards. For example, the action
LANE_LEFT in the state ... resulted in a reward
of 0.8333, which was lower than the reward of
maintaining position.”

3) Llama3.1-8B Response:

Decision: FASTER
Explanation: The current state of the environment, as
represented by the observation table, indicates that the
ego vehicle is in a relatively safe position with no
immediate obstacles or threats.
Rationale:

• The horizontal offset (’x’) is 3.0, and the vertical
offset (’y’) is 7.0, suggesting sufficient space to
maneuver.

• The velocity of the ego vehicle along the x-axis
(’vx’) is 6.0, relatively high, and along the y-axis
(’vy’) is 3.0, indicating some lane change or adjust-
ment.

• Previous experiences show high rewards (e.g.,
0.9824417009602194 and 0.9996955122298443)
for taking FASTER in similar states.

• Aligns with task objectives: achieve maximum ve-
locity, minimize collisions and unnecessary lane
changes, and prefer right-most lane.

Confidence Level: High Reasoning Skill: Decision-
making under uncertainty, leveraging past experiences
and environmental awareness.

4) Claude 3.5 Sonnet Response:

Task goals consideration:
• The primary goal is to achieve maximum velocity

while minimizing collisions.
• We should reduce unnecessary lane changes and

prefer keeping the vehicle in the right-most lane
when safe.

Experience replay insights:
• The highest reward action in the good experiences

is FASTER (reward: 0.9996955122298443) in a
similar situation.

• The current state closely resembles the state
where FASTER action resulted in a high reward
(0.9824417009602194).

Safety assessment:

• There are no vehicles immediately in front of the
ego vehicle that would make accelerating unsafe.

• The nearest vehicle ahead (x = 2.0, y = 0.0) is
slightly ahead and in a different lane, posing no
immediate threat.

Optimization for task goals:
• Increasing speed aligns with the goal of achieving

maximum velocity.
• The ego vehicle is already in a right lane position,

satisfying the preference for the right-most lane.
• Choosing FASTER avoids unnecessary lane

changes.

We still witness some minor issues in small-scale LLMs
(Llama 3.1-8B and Claude 3.5 Sonnet).

• Some small-scale LLMs compute result without suf-
ficient evidence support: In Llama 3.1-8B response we
can see

”The velocity of the ego vehicle along the y-axis
(’vy’) is 3.0, indicating some lane change or adjust-
ment.”

The vertical velocity (’vy’) being 3.0 might indicate a lane
change, but without specific lane position or nearby vehi-
cle context, this assumption is weak. The model seems to
be inferring behavior from incomplete data, making this
a potential hallucination. In Claude 3.5 Sonnet response,
we observe

”The nearest vehicle ahead (x = 2.0, y = 0.0) is
slightly ahead and in a different lane, posing no
immediate threat.”

While it is true that the vehicle in another lane poses
no immediate threat, this assessment doesn’t consider
the potential for lane changes or future behavior. This
simplification could mislead the decision, suggesting in-
complete safety analysis.

• Ambiguous reference to task goals: In Claude 3.5
Sonnet Response, we see

”The ego vehicle is already in a right lane position,
satisfying the preference for the right-most lane.”

This implies that simply being in the right-most lane sat-
isfies task goals, but the task might prioritize safety or ve-
locity over lane position in some scenarios. Overempha-
sizing lane positioning might not align with the broader
task goals, which could lead to suboptimal decisions.

• Small Scale LLMs still Lack of Comprehensive Trade-
off Analysis: Neither response effectively balances mul-
tiple task objectives such as maximizing speed, avoiding
collisions, and minimizing lane changes. While they
touch on individual objectives, the trade-offs between
these objectives are not comprehensively discussed.
Llama-3.1-8B and Claude 3.5 Sonnet responses make use
of exact numerical values (e.g., reward values, vehicle
positions) without fully explaining how they apply to the
current decision-making process. These values may be
hallucinated or overly generalized.
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B. Novelty Comparison with Prior LLM enabled AD works

To address this comment, we summarized the unique aspects
of our study compared to prior works in Table I of the
response document. Moreover, we would like to emphasize
the following unique aspects.

• Limited Studies on Joint AD and V2I Communication
Optimization Policies: Previous frameworks, such as
DiLu [1], introduced reasoning and reflection modules for
autonomous driving (AD) decision-making, but did not
integrate vehicular communication into their optimiza-
tion. Similarly, ”Drive Like a Human” [2] identified key
abilities, such as reasoning and interpretation, for AD sys-
tems. However, it did not explore joint AD optimization
with V2I communication.

It is important to note that jointly optimizing AV
motion dynamics and wireless connectivity is critical
to balancing the trade-offs between communication han-
dovers and speed of AVs in order to achieve the following
[3], [4], (1) receive real-time traffic information from
the wireless network [5], (2) access timely navigation
data [6], (3) communicate effectively with surrounding
vehicles [7], [8], (4) predict dangerous situations and
make informed decisions [9].

• Handling High Complexity: AD and V2I observation
space has at least M1×(NAD+NV 2I) entries at each time
step, where NAD, NV 2I represent the number of features
in AD and V2I, respectively. Given this, the agent should
decide on both transport and telecommunication actions
for each AV which is challenging.

• Distinct Prompt Engineering Approach: To enhance
token efficiency, we discretize transportation states into
arrays representing AV observations and group target and
surrounding AVs into matrices. This approach compresses
transportation information within a token-efficient struc-
ture, enabling efficient decision-making without sacrific-
ing environmental complexity.

• Introduction of Experience Replay Pools: Unlike prior
works [1], [2], our framework generates distinct good and
bad experience pools, storing non-collision and collision
examples, respectively. These pools enable the system
to leverage high-reward examples for decision-making,
improving learning efficiency and robustness.

C. Novelty Comparison with Prior Joint V2I-AD optimization
MORL approaches

Also, in prior studies, such as [3], [4], a joint Markov De-
cision Process (MDP) was designed for V2I communications
and AD. The state space in these works included detailed
kinematics-related features [10] for multiple AVs, represented
as a M1 × F array, where F → {xj , yj , vj , ψj , n

j
R, n

j
T }.

This framework, while effective, posed challenges in terms
of computational complexity and data processing.

Our proposed hybrid LLM-DDQN framework introduces
several methodological advancements:

• We integrate LLM with DDQN to sequentially optimize
AD and V2I decisions. The transportation decisions de-
rived from LLMs (action aj,AD) are iteratively fed as

inputs into the DDQN-based V2I optimization, reducing
the state space dimensions and enhancing computational
efficiency.

• Unlike prior works that required six features per AV, the
proposed V2I state space is defined as:

SV2I = [nj
R,n

j
T ,a

j,AD],

where nj
R and nj

T represent the numbers of reachable
RBSs and TBSs for AV j, and aj,AD is the transportation
action produced by LLMs. This reduction from six fea-
tures to three significantly eases computational burdens
while retaining decision-making effectiveness.

• By leveraging LLMs’ reasoning capabilities for trans-
portation decisions, our framework offloads a significant
portion of the decision-making process, allowing DDQN
to focus on optimizing network connectivity and handoff
control.

D. Training Complexity Analysis
In AD, timely decision-making is critical, especially as task

complexity and vehicle speed increases. Below, we outline
how our hybrid LLM-DDQN framework addresses these chal-
lenges:

• LLMs are deployed via Ollama [11] on edge servers,
close to AVs, to reduce network latency. This eliminates
delays caused by remote server interactions, ensuring that
response times meet real-time requirements for AD.

• To reduce the computational burden, we provide LLMs
with only the most relevant examples instead of all past
examples. Specifically, we supply the top 5 closest past
good and bad examples based on Euclidean distance,
as shown in the good/bad example mechanism rather
than all examples. This focused input ensures efficient
processing while retaining high-quality decision-making,
shown in the provided examples, the experience re-
play mechanism enables LLMs to learn and refine their
decision-making efficiently.

• LLMs generate responses token-by-token. As soon
as a decisive keyword—such as FASTER, SLOWER,
LANE_RIGHT, LANE_LEFT, or IDLE—is detected, the
action is applied immediately, bypassing the need to
process the entire output. This significantly accelerates
the decision-making pipeline.

• The highway simulation operates at 15 Hz [12], meaning
the system processes 15 actions per second for each AV.
This aligns with the decision latency constraints of AD
systems, which require sub-100ms response times.

See sample videos on RF-THz-Highway-Env at https://
patrickyanz.github.io/envelope-videos.html

1) Total Training Complexity:
To evaluate the impact of increasing task complexity, we

conducted experiments to compare the training times of the
proposed Hybrid-LLM-DDQN framework with benchmark
algorithms [3], [4].

2) Test Setup:
We evaluated all methods across five test instances, varying

key parameters: the desired minimum and maximum longi-
tudinal velocities (vmin, vmax), the number of TBSs (nT ), and

https://patrickyanz.github.io/envelope-videos.html
https://patrickyanz.github.io/envelope-videos.html
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Aspect Dilu (Wen et al., 2024) [1] Drive Like a Human (Fu et al., 2024)
[2] Proposed Approach

Scenario
Description

Describes the ego vehicle’s
lane, speed, and the state of
surrounding vehicles (e.g.,

positions, speeds).

Provides an ego vehicle’s state,
including lane, speed, and a

step-by-step thought process for
evaluating actions based on vehicle

safety and environment.

Provides normalized observations of
ego vehicle and surrounding vehicles

(x, y, vx, vy), emphasizing
task-specific goals and environment

dynamics.

Reasoning
Process

Linear: Checks acceleration,
then IDLE, then deceleration.

Evaluates distances and
relative speeds.

Multi-step reasoning: Thought-based
process with action evaluations,

conflict checks, and comparison of
multiple options (e.g., lane change

safety).

Experience Replay: Learns from past
actions to maximize rewards,

minimize collisions, and avoid
unnecessary lane changes. Leverages

training data for better
decision-making.

Task Goals Maintain current speed if safe
and avoid collisions.

Minimize collisions, maximize safety,
and choose the safest action (e.g.,

IDLE, lane change).

Achieve maximum velocity
while minimizing collisions.
Reduce unnecessary lane changes.
Prefer the right-most lane
when safe to do so.

Action
Choices FASTER, SLOWER, IDLE. FASTER, SLOWER, IDLE,

LANE LEFT, LANE RIGHT.
FASTER, SLOWER, IDLE,

LANE LEFT, LANE RIGHT.

Environment
Features

Basic: Lane position, speed,
acceleration.

Detailed: Evaluates actions based on
conflicts (e.g., lane safety, acceleration

feasibility).

Normalized features: Horizontal and
vertical offsets (x, y), velocities

(vx, vy). Accounts for task-specific
rules like preferred lane and collision

avoidance.

Strengths Simple and interpretable.
Comprehensive safety checks ensure

robustness and adaptability in
complex scenarios.

Combines reward optimization with
real-world goals (e.g., speed, safety,

and lane preference). Experience
replay improves decision-making over

time.

Decision-
Making Style

Reactive: Responds to
immediate distances and

speeds.

Thought-driven: Evaluating all
possible actions step-by-step before

choosing the safest option.

Data-driven: Uses reinforcement
learning techniques (e.g., experience
replay) for continuous improvement.

Table I: Comparison of Approaches for AD Decision-Making.

Figure 1: Sample simulation visualized simulation RF-Thz-Highway Env. The green rectangle box and blue rectangle boxes
are target ego AV and The yellow and purple blocks represent the RF BSs and Thz BSs, respectively.

the number of AVs (M ). These combinations are detailed in
Table II.

Instance vmin vmax nT M
I-(20,30,20,20) 20 m/s 30 m/s 20 20
I-(25,35,20,20) 25 m/s 35 m/s 20 20
I-(20,30,10,20) 20 m/s 30 m/s 10 20
I-(20,30,20,50) 20 m/s 30 m/s 20 50
I-(30,40,20,20) 30 m/s 40 m/s 20 20

Table II: Test Instances

Training Time Results:
We trained each algorithm for 4000 episodes until conver-

gence on these the aforementioned test instances (presented in
Table-II) and recorded the total training time, as summarized
in Table III. The results demonstrate that the proposed Hybrid-
LLM-DDQN achieves competitive training times, comparable
to state-of-the-art V2I-AD multi-objective optimization bench-
marks, even as task complexity increases.

Instance MO-Q [3] MO-DQN [3] MO-Dueling-DDQN [13] MO-PPO [14] MO-DDQN-Envelope [4] Hybrid-LLM-DDQN
I-(20,30,20,20) 30’ 36” 31’ 10” 30’ 45” 31’ 50” 30’ 15” 28’ 59”
I-(25,35,20,20) 27’ 24” 27’ 22” 28’ 59” 28’ 41” 26’ 25” 26’ 43”
I-(20,30,10,20) 30’ 11” 30’ 53” 30’ 32” 31’ 22” 30’ 06” 30’ 18”
I-(20,30,20,50) 32’ 00” 32’ 20” 31’ 50” 33’ 00” 31’ 45” 31’ 22”
I-(30,40,20,20) 21’ 45” 22’ 08” 21’ 33” 22’ 52” 21’ 17” 21’ 02”

Table III: Comparison of Training Times for Different Meth-
ods
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From Table III, we observe
• Training time remains manageable even with higher ve-

hicle speeds and greater task complexity, ensuring the
framework’s applicability to real-time systems.

• The proposed Hybrid-LLM-DDQN demonstrates effi-
ciency while maintaining robust decision-making capa-
bilities in high-speed environments where safety-critical,
swift decisions are required.

E. Performance Comparison on different LLMs

Desire Velocity
Model

Number of AVs M

(m/s) M=10 M=20 M=30 M=40

15
ChatGPT-3.5 24.72/11.25/35.97 24.28/10.41/34.69 22.26/8.43/30.69 19.42/7.47/26.89
Llama3.1-8B 25.38/13.66/39.04 24.99/10.45/35.44 22.17/9.09/31.26 20.29/8.07/28.36
Llama3.1-70B 26.12/15.21/41.33 25.41/12.26/37.67 23.49/10.28/33.77 21.71/8.22/29.93

20
ChatGPT-3.5 21.18/9.42/30.60 20.44/7.08/27.52 19.91/7.55/27.46 18.33/4.89/23.22
Llama3.1-8B 21.76/11.99/33.75 21.78/9.37/31.15 20.36/9.21/29.57 20.81/6.93/27.74
Llama3.1-70B 22.88/13.78/36.66 21.99/11.36/33.35 21.02/10.15/31.17 20.04/6.72/26.76

25
ChatGPT-3.5 17.72/8.32/26.04 16.42/6.41/22.83 15.83/5.89/21.72 14.22/5.12/19.34
Llama3.1-8B 18.89/8.70/27.59 16.59/6.38/22.97 16.22/5.94/22.16 15.47/5.39/20.86
Llama3.1-70B 18.34/8.45/26.79 16.78/6.46/23.24 16.38/6.03/22.41 16.05/5.81/21.86

30
ChatGPT-3.5 16.51/7.31/23.82 16.44/5.77/22.21 15.38/5.71/21.09 14.78/5.32/20.10
Llama3.1-8B 16.93/7.65/24.58 16.81/5.92/22.73 16.51/5.82/22.33 15.11/5.46/20.57
Llama3.1-70B 17.42/7.92/25.34 17.04/6.12/23.16 15.42/5.81/21.23 16.22/5.43/21.65

Table IV: Evaluation performance on various LLMs.

We tested multiple state-of-the-art LLMs, including
ChatGPT-3.5 [15], Llama3.1-8B [16], Llama3.1-70B [17],
and Claude 3.5 [18]. As highlighted in the supplementary
material, the performances of these models varied. In the main
paper, we focused on Llama3.1-8B and Llama3.1-70B because
they demonstrated superior performance in our simulation and
evaluation.

We conducted experiments in the RF-THz-Highway-Env
simulation environment [4], [12]. The experiments varied the
number of AVs and desired velocities to simulate diverse
highway scenarios. The evaluation metrics included AD re-
wards, V2I rewards, and total rewards, as defined in [3]. Ta-
ble IV summarizes the comparative performance of ChatGPT-
3.5, Llama3.1-8B, and Llama3.1-70B. Table IV highlights
the superior evaluation performance of Llama3.1-70B and
Llama3.1-8B compared to ChatGPT-3.5. These models con-
sistently exhibit higher rewards across all metrics, showing
their effectiveness in optimizing AD and V2I performance.
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