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Contributions

We develop an MORL framework to design joint network selection and
autonomous driving policies in a multi-band vehicular network (VNet). The
objectives are to
* i) maximize the traffic flow and minimize collisions by controlling
the vehicle's motion dynamics (i.e., speed and acceleration) from a
transportation perspective, and
* ii) maximize the data rates and minimize handoffs (HOs) by jointly
controlling the vehicle's motion dynamics and network selection
from telecommunication perspective.
We consider a novel reward function that maximizes data rate and traffic
flow, ensures traffic load balancing across the network, penalizes HOs, and
unsafe driving behaviors.

The considered problem is formulated as a multi-objective Markov
decision process (MOMDP) that has two-dimensional action space and
rewards consist of telecommunication and autonomous driving utilities.
We then propose single policy MORL solutions with predefined preferences
thus converting the MOOP 1nto a single-objective and apply DQN and
double DQN solutions. The resulting optimal policy depends on the relative
preferences of the objectives.

Learning optimized policies across multiple preferences remains
challenging. To address this, we then develop a novel envelope MORL
solution to effectively navigate the entire spectrum of preferences within a
given domain. This approach empowers the trained model to generate the
best possible policy tailored to any user-defined preference. Our algorithm
hinges on two fundamental insights: firstly, we demonstrate that the
optimality operator governing a generalized Bellman equation with
preferences exhibits valid contraction properties. Secondly, by optimizing
for the convex envelope of multi-objective Q-values, we ensure an
efficient alignment between preferences and the resultant optimal policies.
Leveraging hindsight experience replay, we recycle transitions to
facilitate learning across various sampled preferences, while employing
homotopy optimization to maintain manageable learning processes.
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Figure 1: An illustrative structure of the multi-band vehicular network model. The blue and red circles represent TBSs and RBSs, respectively.
The solid and dash line represent desired signal links and interference links, respectively.

System Model and Assumption
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Acceleration and Lane Change
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Network Composition: two-tier downlink network with Np RF BSs (RBSs)
and Ny THz BSs (TBSs) supporting VV (AVs) on a four-lane highway.

Bandwidth and Data Rate: Each BS, whether RBS or TBS, 1s allocated a
specific bandwidth (Wy or Wy ), and data rates are computed as

W, V . Rij
= I |1y s = o —— o e WR;; = — 1 —

BS Quota and Selection: Maximum AV limits for each RBS and TBS are
denoted by Qr and Q7 respectively. Each AV maintains a set of top three
BSs based on data rates, provided SINRij (t) = Vi

Handoff Management: AVs may switch BSs based on SINR requirements
impacting data rates due to handoff (HO) latencies. A HO penalty u 1s
imposed to discourage frequent HOs, higher for TBSs and lower for RBSs.

MOMDP Formulation

State Space: position, velocity, number of AVs associated with BS i, and
their respective SINRs with BSs.
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2D Action Space: lane changes, acceleration, stop, and deceleration.

Communication Action includes different strategies for selecting BS.
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where 6, 1s collision factor , E{ is HO probability
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Figure 2: Comparison of MO-DQN, MO-DDQN, and the proposed MO-DDQN-envelope framework
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* Bellman Operation with Optimal Filter: The MO optimality operator , as

. b . Figure 4: Training performance on (a) total transportation rewards, (b) total telecommunication rewards, (c) collision rate,
given by: e
and (d) HOs probability.
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Figure 5: valuation performance on (1) total transportation rewards, (2) total telecommunication rewards, (3) collision rate, and

. . - . (4) HOs probability, as a function of (a) variation in TBSs , (b) Variation in different number of AVs, (¢ ) different desire speeds
Where Dr 1s the experience replay transition pool and D, is the preference pool
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