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• We develop an MORL framework to design joint network selection and 
autonomous driving policies in a multi-band vehicular network (VNet). The 
objectives are to 
• i) maximize the traffic flow and minimize collisions by controlling 

the vehicle's motion dynamics (i.e., speed and acceleration) from a 
transportation perspective, and 

• ii) maximize the data rates and minimize handoffs (HOs) by jointly 
controlling the vehicle's motion dynamics and network selection 
from telecommunication perspective.

We consider a novel reward function that maximizes data rate and traffic 
flow, ensures traffic load balancing across the network,  penalizes HOs, and 
unsafe driving behaviors.

• The considered problem is formulated as a multi-objective Markov 
decision process (MOMDP) that has two-dimensional action space and 
rewards consist of  telecommunication and autonomous driving utilities. 
We then propose single policy MORL solutions with predefined preferences 
thus converting the MOOP into a single-objective and apply DQN and 
double DQN solutions. The resulting optimal policy  depends on the relative 
preferences of the objectives. 

• Learning optimized policies across multiple preferences remains 
challenging. To address this, we then develop a novel envelope MORL 
solution to effectively navigate the entire spectrum of preferences within a 
given domain. This approach empowers the trained model to generate the 
best possible policy tailored to any user-defined preference. Our algorithm 
hinges on two fundamental insights: firstly, we demonstrate that the 
optimality operator governing a generalized Bellman equation with 
preferences exhibits valid contraction properties. Secondly, by optimizing 
for the convex envelope of multi-objective Q-values, we ensure an 
efficient alignment between preferences and the resultant optimal policies. 
Leveraging hindsight experience replay, we recycle transitions to 
facilitate learning across various sampled preferences, while employing 
homotopy optimization to maintain manageable learning processes.

Figure 1: An illustrative structure of  the multi-band vehicular network model. The blue and red circles represent TBSs and RBSs, respectively. 
The solid and dash line represent desired signal links and interference links, respectively.

MOMDP Formulation

• State Space: position, velocity, number of AVs associated with BS 𝑖, and 
their respective SINRs with BSs.

• 2D Action Space: lane changes, acceleration, stop, and deceleration. 
Communication Action includes different strategies for selecting BS.

• Reward Functions:

where δ! is collision factor , ξ"
# is HO probability 

System Model and Assumption

• Kinematics Model:

• Acceleration and Lane Change

• Network Composition: two-tier downlink network with 𝑁$	RF BSs (RBSs) 
and 𝑁%	THz BSs (TBSs) supporting 𝑉	(AVs) on a four-lane highway.

• Bandwidth and Data Rate: Each BS, whether RBS or TBS, is allocated a 
specific bandwidth (𝑊$	or 𝑊%	), and data rates are computed as

• BS Quota and Selection: Maximum AV  limits for each RBS and TBS are 
denoted by 𝑄$	and 𝑄%	respectively. Each AV maintains a set of top three 
BSs based on data rates, provided SINRij 𝑡 	≥ 	 𝛾"&  

• Handoff Management: AVs may switch BSs based on SINR requirements 
impacting data rates due to handoff (HO) latencies. A HO penalty 𝜇 is 
imposed to discourage frequent HOs, higher for TBSs and lower for RBSs.

• Bellman Operation with Optimal Filter: The MO optimality operator , as 
given by:

 

Where The optimal filter 𝐻 is instrumental in solving the convex envelope of 
PPF, which represents the current solution frontier. This process is key in 
optimizing the Q-function, 𝑄!	for a given state s and preference weights 𝜔.

Figure 2: Comparison of MO-DQN,  MO-DDQN, and the proposed MO-DDQN-envelope framework 

Figure 4: Training performance on (a) total transportation rewards, (b) total telecommunication rewards, (c) collision rate, 
and (d) HOs probability. 

Figure 5: valuation performance on (1) total transportation rewards, (2) total telecommunication rewards, (3) collision rate, and 
(4) HOs probability, as a function of (a) variation in TBSs , (b) Variation in different number of AVs, (c ) different desire speeds
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Figure 6: Pareto Frontier Comparison in MOO for total Transportation reward and total telecommunication reward among  MO-
DQN, MO-DDQN, MO-dueling-DDQN, MO-PPO, and  MO-DDQN-Envelop, across instances:(a) I-(20,30,20,20), (b) I-
(20,30,10,20), (c) I-(20,30,20,50)

• Hindsight Experience Replay : Transitions and preferences sampling:
 

Where 𝐷'	is the experience replay transition pool and 𝐷(	is the preference pool

• Homotopy Optimization : The MO-DDQN-Envelope , is defined by:
 

The loss function 𝐿)(𝜃)	focus on the accuracy and correctness of training 

The loss function 𝐿*(𝜃)	focus on the smoothness of training 

To focus on accuracy in the initial training and focus on smoothness afterwards. 

And the parameters update as 

Figure 3: An explanation for homotopy optimization method used in the envelope deep MORL algorithm. 
The MSE loss 𝐿!(𝜃)	is hard for optimization since there are many local minima over its landscape. 
Although the value metric loss 𝐿"(𝜃)	has fewer local minima, it is also hard for optimization since there 
are many vectors Q minimizing value metric d. The landscape iof 𝐿"(𝜃)	is too flat. The homotopy path 
connecting 𝐿!(𝜃)	and  𝐿"(𝜃)	provides better opportunities to find the global optimal parameters 𝜃∗	
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