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• We explore the integration of variational quantum circuits (VQCs) and 
reinforcement learning (RL) to optimize the kinematics and network 
connectivity of autonomous vehicles (AVs) in dynamic wireless and road-
traffic flow environments.

• We employ VQC-based multi-objective RL to manage both cell-association 
and autonomous driving policies on a multi-lane highway. This includes 
BSs operating across RF and THz spectrums.

• We formulate the problem as a multi-objective Markov decision process 
(MOMDP), and transform this into quantum eigen-states and eigen-
actions using quantum circuits.

Figure 1: An illustrative structure of  the multi-band vehicular network model. The blue and red circles represent TBSs 
and RBSs, respectively. The solid and dash line represent desired signal links and interference links, respectively.

MOMDP Formulation

• State Space: position, velocity, number of AVs associated with BS 𝑖, 
and their respective SINRs with BSs.

• 2D Action Space: lane changes, acceleration, stop, and deceleration. 
Communication Action includes different strategies for selecting BS.

• Reward Functions:

where δ is collision factor , ξ!
" is HO probability 

System Model and Assumption
• Network Composition: two-tier downlink network with 𝑁# 	RF BSs (RBSs) 

and 𝑁$ 	THz BSs (TBSs) supporting 𝑉	(AVs) on a four-lane highway.

• Bandwidth and Data Rate: Each BS, whether RBS or TBS, is allocated a 
specific bandwidth (𝑊# 	or 𝑊$ 	), and data rates are computed as 𝑅%" =
𝑊" log& 1 + SINRij

• BS Quota and Selection: Maximum AV  limits for each RBS and TBS are 
denoted by 𝑄# 	and 𝑄$ 	respectively. Each AV maintains a set of top three BSs 
based on data rates, provided SINRij 𝑡 	≥ 	 𝛾!'  

• Handoff Management: AVs may switch BSs based on SINR requirements 
impacting data rates due to handoff (HO) latencies. A HO penalty 𝜇 is 
imposed to discourage frequent HOs, higher for TBSs and lower for RBSs.

• VQC function approximator: The VQC approximates the Q-
function crucial for determining optimal actions, as given by:

 

     where 𝑂( ),+ is the expectation of observables at the VQC output

• Parameterization and Observables : The VQC is parametrized 
by 𝜃 and adjusted so that the expected values of observables, 𝑂(, 
fall within the real numbers, 𝐸 𝑂( ∈ 𝑅

•  Loss Function: Updated Q-values are incorporated into a loss 
function derived from Q-learning:  

 
This loss function is used in a gradient descent step to optimize 𝜃, 
improving the selection of action combinations for given states.

Variation Quantum Circuit (VQC)

Figure 2: Skolik's Architecture: when data re-uploading is used, the whole circuit is 
repeated in each layer. Otherwise, just the part that is not surrounded by dashed lines.
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Figure 4: An illustration of the proposed VQC-MORL  architecture where we have 5 qubits and 3 
layers in the experiment. 𝑹𝒙	and 𝑹𝒛 are utilized for state encoding. 5 layers are repeated to 
approximate Q-function. The value function using 1-qubit Pauli-Z observable

Figure 5: Training performances (ego vehicle): (a) Total telecommunication reward (b) Total transport 
reward (c) Collision Rate

Figure 6: Evaluation performance (ego vehicle): (a) Total telecommunication reward (b) Total transport 
reward (c) Total reward. The considered VQC  architecture has 5 qubits and 3 layers.

Figure 3: UQC Architecture. Each processing layer 𝑼 is given by 𝑈#$% �⃑�, ω, α, φ = 𝑅& 2φ 𝑅'(
)

2𝜔 ⋅
�⃑� + 2α  and θ( = 𝜔, α, φ , Although a single-qubit ansatz was shown for simplicity, this ansatz can 
be generalized to allow multiple qubits. 


