Optimizing Vehicular Networks with Variational Quantum Circuits-based Reinforcement Learning Zijiang Yan, Ramsundar Tanikella, Hina Tabassum **IEEE INFOCOM 2024**

Contributions

- We explore the integration of variational quantum circuits (VQCs) and reinforcement learning (RL) to optimize the kinematics and network connectivity of autonomous vehicles (AVs) in dynamic wireless and roadtraffic flow environments.
- We employ VQC-based multi-objective RL to manage both cell-association and **autonomous driving policies** on a multi-lane highway. This includes BSs operating across RF and THz spectrums.
- We formulate the problem as a multi-objective Markov decision process (MOMDP), and transform this into quantum eigen-states and eigenactions using quantum circuits.

Figure 1: An illustrative structure of the multi-band vehicular network model. The blue and red circles represent TBSs and RBSs, respectively. The solid and dash line represent desired signal links and interference links, respectively.

System Model and Assumption

- Network Composition: two-tier downlink network with N_R RF BSs (RBSs) and N_T THz BSs (TBSs) supporting V (AVs) on a four-lane highway.
- **Bandwidth and Data Rate:** Each BS, whether RBS or TBS, is allocated a specific bandwidth (W_R or W_T), and data rates are computed as R_{ii} = $W_i \log_2 \left(1 + \text{SINR}_{ii}\right)$
- **BS** Quota and Selection: Maximum AV limits for each RBS and TBS are denoted by Q_R and Q_T respectively. Each AV maintains a set of top three BSs based on data rates, provided SINR_{ii}(t) $\geq \gamma_{th}$
- **Handoff Management:** AVs may switch BSs based on SINR requirements impacting data rates due to handoff (HO) latencies. A HO penalty μ is imposed to discourage frequent HOs, higher for TBSs and lower for RBSs.

MOMDP Formulation

- **State Space:** position, velocity, number of AVs associated with BS *i*, and their respective SINRs with BSs.
- **2D** Action Space: lane changes, acceleration, stop, and deceleration. Communication Action includes different strategies for selecting BS.
- Reward Functions:

$$r_j^{\text{tran}}(t) = \omega_1 \left(\frac{||\mathbf{v}_j(t)|| - v_{\min}}{v_{\max} - v_{\min}} \right) - \omega_2 \cdot c_{\min}$$
$$r_j^{\text{tele}}(t) = \omega_3 R_{i_0 k}(t) \left(1 - \min(1, t)\right)$$

where δ is collision factor, ξ_t^J is HO probability

 $\delta, \forall k \in \mathcal{U},$

 $\xi_k(t)))$

Proposed VQC-MORL Solution

VQC function approximator: The VQC approximates the Qfunction crucial for determining optimal actions, as given by:

where $\langle O_a \rangle_{s,\theta}$ is the expectation of observables at the VQC output

fall within the real numbers, $E(O_a) \in R$

• Loss Function: Updated Q-values are incorporated into a loss function derived from Q-learning:

$$\mathcal{L}(\theta) = \frac{1}{|D|} \sum_{(s,a,r,s') \in D} (Q(s,a;\theta) - [r + \max_{a'} Q(s',a';\theta')])^2$$

This loss function is used in a gradient descent step to optimize θ , improving the selection of action combinations for given states.

Algorithm 1: VQC-MOR
Result: Quantum Circuit U_{θ}
Data: Quantum Circuit U_{θ} , E

mini batch-size m

Initialization: $\mathcal{D} \leftarrow 0$, $\theta \leftarrow 0$, Target quantum circuits $\theta^* \leftarrow \theta$, RBSs, TBSs, AVs

2 while episode < episode limit do

3	$t \leftarrow 0$, s_1 initial and encode	
4	while $t \leq$ horizon limit d	
5	AV selects a_t by ϵ -gr	
	and Enforce a_t^{tele} are	
6	Experience Replay	
	transitions in $\mathcal{D}\left(s_{k} ight)$	
7	Set target- Q funct	
8	Set real Q -function	
9	Compute loss: $\mathcal{L}(\theta)$	
10	Perform gradient de	
	loss $\mathcal{L}(\theta)$; $\theta \leftarrow \theta - \theta$	
11	Update the $U_{ heta}$ weigh	
12	end	
13	Policy updated in terms	

14 **end**

Variation Quantum Circuit (VQC)

$R_x(x_1)$	$R_y(heta_{11}) - R_y(heta_{11})$
$R_x(x_2)$	$R_y(\theta_{21}) - R$
$R_x(x_3)$	$R_y(heta_{31}) - R_y(heta_{31})$
$R_x(x_4)$	$R_y(heta_{41}) - R_y(heta_{41})$

Figure 2: Skolik's Architecture: when data re-uploading is used, the whole circuit is repeated in each layer. Otherwise, just the part that is not surrounded by dashed lines.

 $Q(s,a;\theta) = \langle O_a \rangle_{s,\theta} = \langle 0^{\otimes 5} | U_{\theta}^{\dagger}(s) O_a U_{\theta}(s) | 0^{\otimes 5} \rangle$

Parameterization and Observables : The VQC is parametrized by θ and adjusted so that the expected values of observables, O_a ,

L Algorithm

Experience replay memory D,

de it to quantum state reedy search as a_t^{tele} and a_t^{tran} nd a_t^{tran} to AV;

sample mini-batch

 a_k, a_k, r_k, s'_k) where $k \in m$; tion: $Q(s, a; \theta) = \langle O_a \rangle_{s, \theta}$ n: $Q(s_t, a_t; heta)$

escent step by minimizing $a_t \cdot \mathcal{L}(\theta) \cdot_{\theta} y_k;$ hts $\theta \leftarrow \theta^*$;

of U_{θ}

Figure 3: UQC Architecture. Each processing layer **U** is given by $U^{UAT}(\vec{x}, \vec{\omega}, \alpha, \phi) = R_v(2\phi)R_z(2\vec{\omega} \cdot \mathbf{z})$ $\vec{x} + 2\alpha$) and $\overline{\theta_i} = (\vec{\omega}, \alpha, \phi)$, Although a single-qubit ansatz was shown for simplicity, this ansatz can be generalized to allow multiple qubits.

Figure 4: An illustration of the proposed VQC-MORL architecture where we have 5 qubits and 3 layers in the experiment. R_x and R_z are utilized for state encoding. 5 layers are repeated to approximate Q-function. The value function using 1-qubit Pauli-Z observable

Simulation Results and Evaluation

Figure 5: Training performances (ego vehicle): (a) Total telecommunication reward (b) Total transport reward (c) Collision Rate

Figure 6: Evaluation performance (ego vehicle): (a) Total telecommunication reward (b) Total transport reward (c) Total reward. The considered VQC architecture has 5 qubits and 3 layers.

- WKSHPS), May 2024.

References

• Z. Yan, R. Tanikella, and H. Tabassum, Optimizing Vehicular Networks with Variational Quantum Circuits-based Reinforcement Learning, in IEEE Conference on Computer Communications Workshops (INFOCOM

• Z. Yan and H. Tabassum, *Reinforcement learning for joint V2I network selection and autonomous driving* policies, in IEEE Global Communications Conference (pp. 1241-1246), Dec. 2022. • R. Coelho, A. Sequeira, and P. L. Santos, VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability, arXiv preprint arXiv:2401.11555, 2024.

Acknowledgement

