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* We explore the integration of variational quantum circuits (VQCs) and  ° VQC. functlo.n approximator: The.VQC approximates the Q- 0 — U ( 5, 1, ?) R 1 U (8 N, Qj) I AN
reinforcement learning (RL) to optimize the kinematics and network function crucial for determining optimal actions, as given by:
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where <Oa>s 0 1S the eXpeCtatiOIl of observables at the VQC Output X + 2a) and E = (w, a, ), Although a single-qubit ansatz was shown for simplicity, this ansatz can
' be generalized to allow multiple qubits.

* We employ VQC-based multi-objective RL to manage both cell-association

and autonomous driving policies on a multi-lane highway. This includes ~* Parameterization and Observables : The VQC 1s parametrized
BSs operating across RF and THz spectrums. by 6 and adjusted so that the expected values of observables, O,

fall within the real numbers, E(O,) € R

* We formulate the problem as a multi-objective Markov decision process
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(MOMDP), and transform this into quantum eigen-states and eigen- * Loss Function: Updated Q-values are incorporated into a loss (e (50 et —
actions using quantum circuits. function derived from Q-learning: /
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b improving the selection of action combinations for giVCIl states. Figure 4: An illustration of the proposed VQC-MORL architecture where we have 5 qubits and 3
layers in the experiment. R, and R, are utilized for state encoding. 5 layers are repeated to
Figure 1: An 1illustrative structure of the multi-band vehicular network model. The blue and red circles represent TBSs = . - approximate Q-function. The value function using 1-qubit Pauli-Z observable
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